Effects of length dispersity and film fabrication on the sheet resistance of copper nanowire transparent conductors.
نویسندگان
چکیده
Development of thin-film transparent conductors (TC) based on percolating networks of metal nanowires has leaped forward in recent years, owing to the improvement of nanowire synthetic methods and modeling efforts by several research groups. While silver nanowires are the first commercially viable iteration of this technology, systems based on copper nanowires are not far behind. Here we present an analysis of TCs composed of copper nanowire networks on sheets of polyethylene terephthalate that have been treated with various oxide-removing post treatments to improve conductivity. A pseudo-2D rod network modeling approach has been modified to include lognormal distributions in length that more closely reflect experimental data collected from the nanowire TCs. In our analysis, we find that the copper nanowire TCs are capable of achieving comparable electrical performance to silver nanowire TCs with similar dimensions. Lastly, we present a method for more accurately determining the nanowire area coverage in a TC over a large area using Rutherford Backscattering Spectrometry (RBS) to directly measure the metal content in the TCs. These developments will aid research and industry groups alike in the characterization of nanowire based TCs.
منابع مشابه
Solution-Processed Flexible Transparent Conductors Composed of Silver Nanowire Networks Embedded in Indium Tin Oxide Nanoparticle Matrices
Although silver nanowire meshes have already demonstrated sheet resistance and optical transmittance comparable to those of sputter-deposited indium tin oxide thin films, other critical issues including surface morphology, mechanical adhesion and flexibility have to be addressed before widely employing silver nanowire networks as transparent conductors in optoelectronic devices. Here, we demons...
متن کاملTotally embedded hybrid thin films of carbon nanotubes and silver nanowires as flat homogenous flexible transparent conductors
There is a great need for viable alternatives to today's transparent conductive film using largely indium tin oxide. We report the fabrication of a new type of flexible transparent conductive film using silver nanowires (AgNW) and single-walled carbon nanotube (SWCNT) networks which are fully embedded in a UV curable resin substrate. The hybrid SWCNTs-AgNWs film is relatively flat so that the R...
متن کاملUltrathin Epitaxial Cu@Au Core-Shell Nanowires for Stable Transparent Conductors.
Copper nanowire networks are considered a promising alternative to indium tin oxide as transparent conductors. The fast degradation of copper in ambient conditions, however, largely overshadows their practical applications. Here, we develop the synthesis of ultrathin Cu@Au core-shell nanowires using trioctylphosphine as a strong binding ligand to prevent galvanic replacement reactions. The epit...
متن کاملSynthesis of Ultrathin Copper Nanowires Using Tris(trimethylsilyl)silane for High-Performance and Low-Haze Transparent Conductors.
Colloidal metal nanowire based transparent conductors are excellent candidates to replace indium-tin-oxide (ITO) owing to their outstanding balance between transparency and conductivity, flexibility, and solution-processability. Copper stands out as a promising material candidate due to its high intrinsic conductivity and earth abundance. Here, we report a new synthetic approach, using tris(tri...
متن کاملSilver nanowire-based transparent, flexible, and conductive thin film
The fabrication of transparent, conductive, and uniform silver nanowire films using the scalable rod-coating technique is described in this study. Properties of the transparent conductive thin films are investigated, as well as the approaches to improve the performance of transparent silver nanowire electrodes. It is found that silver nanowires are oxidized during the coating process. Incubatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 34 شماره
صفحات -
تاریخ انتشار 2015